

Journal of Organometallic Chemistry 484 (1994) 97-106

The reaction of R,S and $R,R/S,S-[Fe_2\{\eta,\eta-C_5H_4CH(NMe_2)CH(NMe_2)C_5H_4\}(CO)_2(\mu-CO)_2]$ and $[Fe_2\{\eta,\eta-C_5H_4CH_2CH(NMe_2)C_5H_4\}(CO)_2(\mu-CO)_2]$ with alkylating agents. Preparation, structure and spectra of $[Fe_2\{\eta,\eta-C_5H_4CH(NMe_2)CH(NMe_3)C_5H_4\}(CO)_2(\mu-CO)_2]^+$ and $[Fe_2\{\eta,\eta-C_5H_4CH_2CH(NMe_3)C_5H_4\}(CO)_2(\mu-CO)_2]^+$ salts

M. Gary Cox^a, A.R. Manning^{a,*}, Paul Soye^a, P. McArdle^b, D. Cunningham^b

^a Department of Chemistry, University College, Belfield, Dublin 4, Ireland ^b Department of Chemistry, University College, Galway, Ireland

Received 28 February 1994

Abstract

The reagents MeI and MeOSO₂CF₃ methylate R,S-[Fe₂{ η,η -C₅H₄CH(NMe₂)CH(NMe₂)C₅H₄)(CO)₂(μ -CO)₂], 1, its R, R/S, S isomer 2, and $[Fe_2\{\eta, \eta-C_5H_4CH_2CH(NMe_2)C_5H_4\}(CO)_2(\mu-CO)_2]$, 3, at one N atom only. Subsequent anion exchange gives salts of the R,S and R,R/S,S-[Fe₂{ η,η -C₅H₄CH(NMe₂)CH(NMe₃)C₅H₄)(CO)₂(μ -CO)₂]⁺ and [Fe₂{ η,η -C₅H₄)(CO)₂(μ -CO)₂]⁺ $C_{4}C_{2}C_{4}C_{2}C_{4}C_{2}C_{4}C_{2}C_{4}C_{2}C_{2}^{+}$ cations, [4]X, [5]X and [6]X, respectively (X⁻ = Cl⁻, Br⁻, I⁻, [SO₃CF₃]⁻, [PF₆]⁻ or [BPh₄]⁻). The ¹H-NMR spectra of the cations show that rotation about the C-NMe₃ bond and rotation-inversion of NMe₂ groups can be slowed in $[4]^+$ and $[5]^+$ but not in $[6]^+$, but there is no evidence for partial rotation about the ring-linking C-C bond in any cation, as there is in free 1. The chemical shifts of the Me₃NC-H and, to a lesser extent, the cyclopentadienyl hydrogen atoms only of all three cations are strongly dependent on the nature of the anion X^{-} and the solvent. This is attributed to strong interactions between the Me₁NC-H hydrogen atom and the solvent or anion, which decrease along the series $X^{-}=CI^{-}>Br^{-}>I^{-}[SO_{3}CF_{3}]^{-}>[BPh_{4}]^{-}$. There is indirect evidence for Me₂N-> CH(NMe₃)⁺ interactions in [4]⁺ and [5]⁺. Attempts to prepare the $X^- = F^-$ salts failed. Reactions of [4][SO₃CF₃] with [*n*-Bu₄N]F in tetrahydrofuran/acetonitrile gave $[4][H_4F_5]$ whilst $[5][SO_3CF_3]$ and $[Et_4N]F \cdot 2H_2O$ in dichloromethane gave $[5][H_5F_6]$. In acetonitrile $[Et_4N]F \cdot 2H_2O$ acts a source of $[OH]^-$ ions. It brings about Me₃N and H⁺ elimination from [4][SO₃CF₃] to give an enamine [Fe₂{ η,η - $C_5H_4CHC(NMe_2)C_5H_4)(CO)_2(\mu-CO)_2]$, a water-gas shift mediated Me₃N displacement by H⁻ from [5][SO₃CF₃] to give 3, and converts [6][SO₃CF₃] to [6][OH]. X-ray diffraction has been used to determine the crystal and molecular structures of $R,S-[Fe_2\{\eta,\eta-C_5H_4CH(NMe_2)CH(NMe_3)C_5H_4](CO)_2(\mu-CO)_2]I - 2MeCN \text{ and } R,S-[Fe_2\{\eta,\eta-C_5H_4CH(NMe_2)CH(NMe_3)C_5H_4](CO)_2(\mu-CO)_2]I - 2MeCN \text{ and } R,S-[Fe_2\{\eta,\eta-C_5H_4CH(NMe_3)C_5H_4](CO)_2(\mu-CO)_2]I - 2MeCN \text{ and } R,S-[Fe_2\{\eta,\mu-CO)_2[I] - 2MeCN \text{ and } R,S-[Fe_2\{\eta,\mu-CO)_2[I] - 2MeCN \text{ and } R,S-[Fe_2\{\eta,\mu-CO)_2[I] - 2MeCN \text{ and } R,S-[Fe_2[I] - 2MECN \text{ and } R$ $C_{5}H_{4}(CO)_{2}[SO_{3}CF_{3}] \cdot CH_{2}Cl_{2}$. Despite the very different ¹H-NMR spectra of these salts in solution, both cations have structures based on that of 1 with methylation of the NMe₂ group that is transoid to a cyclopentadienyl ring rather than that which is transoid to a hydrogen atom. Bond lengths and bond angles are similar to those found in 1, 2 and related species.

Keywords: Iron; Carbonyls; Cyclopentadienyl; Crystal structure; Fluxionality; Hydrogen bonding

1. Introduction

The complexes R,S- and R,R/S,S-[Fe₂{ η , η -C₅H₄ CH(NMe₂)CH(NMe₂)C₅H₄](CO)₂(μ -CO)₂], 1 and 2 respectively, are products of the reaction of 6-dimethylaminofulvene with $[Fe(CO)_5]$ at 140°C [1]. The complex $[Fe_2\{\eta,\eta-C_5H_4CH_2CH(NMe_2)C_5H_4\}(CO)_2(\mu-CO)_2]$, 3, may be obtained from either of them [1]. We describe below the reactions of all three with methylating agents that convert one of their NMe₂ groups into an NMe₃⁺ group, and the spectra and structures of the $[Fe_2\{\eta,\eta-C_5H_4CH(Z)CH(NMe_3)C_5H_4\}(CO)_2(\mu-CO)_2][X]$ salts thus obtained (Z = NMe₂ or H).

^{*} Corresponding author.

⁰⁰²²⁻³²⁸X/94/\$07.00 © 1994 Elsevier Science S.A. All rights reserved SSDI 0022-328X(94)24702-K

98 Table 1

Salt	M.p. (°C) ^a	Analyses ^b			
		%C	%H	%N	%Halogen
$[4]Cl \cdot 2H_2O^{c}$	189–191	45.9 (45.6)	4.9 (5.1)	4.9 (5.1)	6.9 (6.4)
[4]Br ^c	dec. 150	44.8 (45.0)	4.7 (4.5)	4.8 (5.0)	14.3 (14.2)
[4]I · 2MeCN	110-111	43.4 (43.5)	4.4 (4.5)	7.7 (8.1)	18.0 (18.4)
$[4(CD_3)]I \cdot 2MeCN$	119-120	42.7 (42.3)	4.5 (4.3)	7.6 (7.9)	18.3 (17.9)
[4]CF ₃ SO ₃	132-134	41.8 (41.9)	4.0 (4.0)	4.4 (4.4)	9.1 (9.0)
$[4]PF_6 \cdot 2H_2O^{c}$	110-113	37.8 (38.1)	4.5 (4.2)	4.5 (4.2)	17.9 (17.2)
[4]F₅H₄°	dec. 110	43.8 (43.4)	5.1 (5.0)	4.2 (4.8)	17.1 (16.4)
[5]]	157-159	41.1 (41.5)	4.2 (4.1)	4.0 (4.1)	20.6 (20.9)
[5(CD ₃)]I	169-170	41.6 (41.3)	3.8 (3.6)	4.6 (4.6)	20.4 (20.8)
[5]CF ₃ SO ₃	186-188	41.8 (41.9)	4.1 (4.0)	4.4 (4.4)	9.3 (9.0)
[5]F ₆ H ₅ °	dec. 120	42.2 (42.0)	5.8 (5.0)	4.4 (4.7)	18.9 (18.7)
[6]CI H ₂ O ^c	dec. 213	45.9 (46.4)	4.3 (4.5)	2.7 (2.8)	7.5 (7.2)
[6]Br · 2H ₂ O °	dec. 210	41.3 (41.1)	4.0 (4.3)	2.4 (2.5)	14.9 (14.4)
[6]I	dec. 197	40.0 (40.3)	3.7 (3.5)	2.2 (2.4)	
[6]CF ₃ SO ₃ ·H ₂ O	dec. 202	39.4 (39.7)	3.3 (3.8)	2.3 (2.3)	5.8 (5.3)
[6]PF ₆ °	dec. 198	39.1 (39.1)	3.4 (3.4)	2.4 (2.4)	
[6]BPh₄ · H₂O °	dec. 203	67.1 (66.6)	5.4 (5.2)	1.8 (1.7)	
[6]OH · CH ₂ Cl ₂	dec. 213	45.1 (44.5)	4.2 (4.3)	2.6 (2.6)	% F = 0

Melting points and analyses of some of the $[Fe_2(\eta, \eta - C_5H_4CH(Z)CH(NMe_3)C_5H_4)(CO)_2(\mu - CO)_2]X$ salts described in the text ($Z = NMe_2$ or H)

^a Determined in sealed tubes. dec. = decomposition.

^b Found (calculated).

^c Prepared by anion exchange.

2. Experimental section

Complexes 1, 2, and 3 were prepared as described elsewhere [1]. Other chemicals were purchased and used as received. Solvents were dried and deoxygenated by refluxing over calcium hydride under nitrogen and distilled prior to use. Unless otherwise stated, all reactions were carried out at room temperature in dried and deoxygenated solvents under nitrogen.

Preparation of [4]X, [5]X and [6]X Salts: solutions of 1, 2 or 3 (1 g) were stirred with an excess of (a) $MeOSO_2CF_3$ (1 cm³) in benzene (70 cm³) for 1 h, (b) MeI (2 cm³) in acetonitrile (20 cm³) for 2 h, (c) CD₃I (2 cm³) in acetonitrile (20 cm³) for 24 h, or (d) Me₂SO₄ (1 cm³), NH₄PF₆ (0.2 g) and 18-Crown-6 for 24 h. The products (Table 1) separated out from the reaction mixtures (benzene solution) or after removal of the solvent (acetonitrile solution). They were filtered off, washed with benzene and pentane, and recrystallized from dichloromethane-pentane mixtures if required.

Solutions of [4][SO₃CF₃], [5][SO₃CF₃] or [6][SO₃CF₃] (0.5 g) and a fivefold molar excess of $[n-Bu_4N]Cl$, $[n-Bu_4N]Br$, $[n-Bu_4N]I$, or $[Et_4N][PF_6]$ in acetonitrile (30 cm³) were stirred for 2 h. The solvents were then removed under reduced pressure and the residues recrystallized from dichloromethane (yields 70%).

2.1. The Reaction of $[4][SO_3CF_3]$, $[5][SO_3CF_3]$ and $[6][SO_3CF_3]$ with $[R_4N]F$

A solution of $[n-Bu_4N]F(1 M)$ in tetrahydrofuran (2 cm³) was added to one of [4][SO₃CF₃] (0.6 g) in acetonitrile (25 cm³). After 10 min the solvent was removed under reduced pressure and the residue chromatographed (alumina/methanol) to give [4][H₄F₅] as the principal product (75% yield) and some [Fe₂{ η , η -C₅H₄CH₂C(O)C₅H₄}(CO)₂(μ -CO)₂] (yield 10%).

Table 2

The infrared spec	ctra of	f the [Fe ₂	{η,η-0	C_5H_4	CH(Z)CH(NI	Me ₃)C ₅ I	1 ₄}
$(CO)_2(\mu - CO)_2]X$	salts	between	1750	and	2050	cm^{-1}	(Z = H	or
$\rm NMe_2$)								

Compound	Absorption bands ^a					
1	1767 (5.0)	1798 (1.0)	1958 (1.8)	2000 (10)		
2	1768 (4.8)	1812 (1.0)	1962 (2.0)	2001 (10)		
3	1768 (4.5)		1960 (1.7)	2002 (10)		
[4]Cl·2H ₂ O	1777 (5.0)	1817 (1.0)	1971 (1.8)	2010 (10)		
[4]Br	1779 (4.7)	1818 (0.5)	1971 (1.6)	2009 (10)		
[4]I · 2MeCN	1778 (5.0)	1815 (1.4)	1971 (2.0)	2010 (10)		
[4(CD ₃)]I · 2MeCN	1778 (5.0)	1815 (0.9)	1972 (2.0)	2010 (10)		
[4]CF ₃ SO ₃	1780 (4.5)	1821 (1.0)	1974 (1.6)	2012 (10)		
$[4]PF_6 \cdot 2H_2O$	1780 (4.5)	1820 (1.0)	1973 (1.5)	2012 (10)		
[4]F ₅ H ₄ ^b	1773 (8.7)	1803 (3.8)	1965 (5)	2005 (10)		
[5]I	1781 (4.1)	1822 (1.0)	1973 (1.6)	2016 (10)		
[5(CD ₃)]I	1779 (5.0)	1817 (1.0)	1972 (1.8)	2011 (10)		
[5]CF ₃ SO ₃	1783 (4.2)	1827 (1.0)	1974 (1.6)	2012 (10)		
[5]F ₆ H ₅ °	1794 (5.8)		1966 (1.8)	2005 (10)		
[6]Cl °	1784 (7)		1959 (1.7)	2000 (10)		
[6] Br ^c	1780 (5.5)	1820 (0.5)	1967 (1.8)	2006 (10)		
[6]I °	1784 (6.9)		1959 (1.7)	2001 (10)		
[6]CF ₃ SO ₃	1780 (5)	1810 (0.5)	1975 (1.5)	2013 (10)		
[6]PF ₆	1781 (5)	1812 (0.5)	1973 (1.6)	2012 (10)		
[6]BPh ₄ °	1784 (6.8)		1959 (1.7)	2001 (10)		
[6]OH	1774 (5.7)		1961 (2.1)	2004 (10)		

^a Peak positions (cm⁻¹) with relative peak heights in parentheses. Spectra measured in chloroform solution. Due to ν (CO) vibrations. See text.

^b Dichloromethane solution.

^c Acetonitrile solution.

These were recrystallized from dichloromethane-hexane.

The salts [5][SO₃CF₃] (0.5 g) and [Et₄N]F \cdot 2H₂O (0.7 g) in dichloromethane (100 cm³) gave, after 10

Table 3

¹H-NMR spectra of $[Fe_2(\eta,\eta-C_5H_4CH(Z)CH(NMe_3)C_5H_4)(CO)_2(\mu-CO)_2]X$ salts (Z = NMe₂ or H)

Compound	Solvent	Т(К)	Resonances a,b
			CH-CH _n c,d
1	CS ₂ /CD ₂ Cl ₂	298	3.01 3.01
2	CS_2/CD_2Cl_2	298	2.81 2.81
3	CDCl ₃	293	3.04 2.36 2.03
[4]Cl	$CD_{2}Cl_{2}$	293	5.99 4.54
	CD ₃ CN	293	5.01 4.52
[4]Br	$CD_{2}Cl_{2}$	293	5.80 4.52
	CD ₃ CN	293	5.19 4.54
[4]I	CD_2Cl_2	293	5.52 4.50
	CD_2Cl_2	183	4.53 ^b
	$CD_{3}CN$	334	4.24 4.52
	CD ₃ CN	293	4.26 4.53
+[n-Bu ₄ N]I	CD ₃ CN	293	4.94 4.54
[4(CD ₃)]I	CD_2Cl_2	293	5.47 4.50
	CD_2Cl_2	176	5.31 4.53
	CD ₃ CN	338	4.25 4.52
	CD ₃ CN	293	4.27 4.52
[4]CF ₃ SO ₃	CH_2Cl_2	293	4.43 4.48
•	CH_2Cl_2	182	4.37 4.47
	CDCl ₃	293	4.49 4.49
+0.54 [<i>n</i> -Bu ₄ N]Br	CDCl ₃	293	4.46 4.49
+0.97 [n-Bu ₄ N]Br	CDCl ₃	293	5.39 4.50
+1.75 [<i>n</i> -Bu ₄ N]Br	CDCl ₃	293	5.44 4.50
$+ > 5.1 [n-Bu_4N]Br$	CDCl ₃	293	5.52 4.49
	CD ₃ CN	293	3.86 4.52
+[n-Bu ₄ N]I	CD ₃ CN	293	4.95 4.54
[4]PF ₆	CD ₃ CN	293	3.85 4.52
·	CD ₃ CN	359	3.85 4.51
[4]F5H4	CD ₃ OD	293	4.20 4.63
[5]I	CDCl ₃	293	5.95 3.37
	CD ₃ CN	293	4.90 3.58
	CD ₃ CN	333	4.84 3.58
[5(CD ₃)]I	CD_2Cl_2	293	5.90 3.39
-	CD_2Cl_2	213	5.82 3.39
[5]CF ₃ SO ₃	CD_2Cl_2	293	4.67 3.36
	CD_2Cl_2	192	4.62 3.35
	CD_3CN	293	4.13 3.56
+2.4 [<i>n</i> -Bu ₄ N]I	CD ₃ CN	293	5.09 3.60
+16 [<i>n</i> -Bu ₄ N]I	CD ₃ CN	293	5.44 3.67
[5]PF ₆	CD ₃ CN	293	4.13 3.55
[5]F ₆ H ₅	CD ₃ OD	293	4.36 3.71
[6]Cl	CD ₃ CN	293	4.75 2.83 2.34
[6]Br	CD ₃ CN	293	4.51 2.82 2.35
[6]Br	CD ₃ OD	293	4.20 3.01 2.45
[6]I	CD ₃ CN	293	4.32 2.85 2.36
+1 [Me ₄ N]PF ₆	CD_3CN	293	4.08 2.83 2.34
$+3 [Me_4N]PF_6$	CD ₃ CN	293	3.91 2.87 2.33
+1[6]CF ₃ SO ₃	CD ₃ CN	293	4.20 2.84 2.36
+2[6]CF ₃ SO ₃	CD ₃ CN	293	4.15 2.84 2.36
[6]CF ₃ SO ₃ ^d	CD ₃ CN	293	3.90 2.81 2.32
[6]CF ₃ SO ₃	CD ₃ OD	293	4.10 2.95 2.44
[6]PF ₆	CD ₃ CN	293	3.91 2.82 2.33
[6]PF ₆	$(CD_3)_2CO$	293	4.45 3.21 2.70
[6]PF ₆	$(CD_3)_2CO$	223	4.49 3.15 2.71
[6]BPh ₄	CD ₃ CN	293	3.85 2.77 2.29
[6]OH	CD ₃ OH	293	4.11 ^b 2.44

min, $[5][H_5F_6]$ as the only product, which was isolated and purified as above.

The reaction between [4][SO₃CF₃] (0.5 g) and [Et₄ N]F \cdot 2H₂O (0.7 g) in acetonitrile (100 cm³) was complete within a few minutes. Me₃N was evolved and identified by its distinctive smell. After 3 h the solvent was removed under reduced pressure and residue recrystallized from benzene to give the enamine [Fe₂{ η , η -C₅H₄CHC(NMe₂)C₅H₄(CO)₂(μ -CO)₂] (yield 60%).

The reaction between [5][SO₃CF₃] (0.5 g) and [Et₄ N]F \cdot 2H₂O (0.7 g) in acetonitrile (100 cm³) was complete only after 8 h; Me₃N was evolved. Chromatography (alumina/dichloromethane) followed by recrystallization from dichloromethane-hexane gave the mono-amine [Fe₂{ η,η -C₅H₄CH₂CH(NMe₂)C₅H₄} (CO)₂(μ -CO)₂] in 20% yield. At 50°C the reaction time was reduced to ca. 0.5 h and if CO was bubbled through the reaction mixture the product yield was increased to 30%.

The salt $[Et_4N]F \cdot 2H_2O$ (0.7 g) was added to a solution of $[6]SO_3CF_3$ (0.6 g) in acetonitrile (80 cm³). After 10 min, the mixture was chromatographed (alumina/methanol) and the isolated product was recrystallized from dichloromethane. $[Fe_2\{\eta,\eta-C_5H_4CH_2CH(NMe_3)C_5H_4\}(CO)_2-(\mu-CO)_2][OH] \cdot CH_2Cl_2$ was the only product (yield 50%).

The salts prepared are summarised in Table 1 along with their yields, melting points, and analyses (from the Analytical Laboratory, University College, Dublin).

Infrared spectra were recorded on a Perkin Elmer 1710 or 1720 FTIR spectrometer, and NMR spectra on a Jeol GNM-X 270 NMR spectrometer. The more important data are summarised in Tables 2–4. Complete ¹H-NMR data are available from the authors.

2.2. Structures of (a) $R_{,S}-[Fe_{2}\{\eta,\eta-C_{5}H_{4}CH(NMe_{2}) CH(NMe_{3})\}(CO)_{2}(\mu-CO)_{2}]I \cdot 2MeCN and (b) <math>R_{,S}-[Fe_{2}\{\eta,\eta-C_{5}H_{4}CH(NMe_{2})CH(NMe_{3})\}(CO)_{2}(\mu-CO)_{2}]-[SO_{3}CF_{3}] \cdot CH_{2}Cl_{2}$

The crystal data are summarised in Table 5. Unit cell dimensions were determined from diffractometer

Notes to Table 3:

^a Chemical shifts given in ppm downfield from Me_4Si as an internal standard.

^b Indicates a resonance hidden by the solvent or added salt.

^c These resonances of [4]X and [5]X are doublets with integrations of unity unless it is stated otherwise. The chemical shift of the Me_3NC-H proton is given first, that of the Me_2NC-H proton is given second. The coupling constants lie in the range 6.1-6.5 Hz for [4]X, and 11.7-12.0 Hz for [5]X.

^{11.7-12.0} Hz for [5]X. These resonances of [6]X are double doublets with integrations of unity given in the order H_A , H_B , H_C with coupling constants $J_{AB} = 2.4-2.5$ Hz, $J_{AC} = 12.6-12.7$ Hz and $J_{BC} = 14.6-15.2$ Hz. The resonances due to H_B are often partially obscured by those due to the NMe₃ protons. The labelling of these protons is illustrated in Fig. 3.

Table 4			
¹³ C-NMR spectra of the [Fe ₂ {	$\eta, \eta - C_5 H_4 CH(Z) CH(NMe_3) C_5 H_4)(0)$	CO) ₂ (µ-CO) ₂]X salts at 298 I	$X. (Z = H \text{ or } NMe_2)$

Compound	Solvent	Resonances *						
		N(CH ₃) ₂ ^b	$N(CH_3)_3$	$CHNMe_2/CH_2$	CHNMe ₃	Cyclopentadienyl ^c	СО	<i>μ-</i> CO
1	CDCl ₃	45.2		65.4		79.52-100.81 (5)	210.3	271.9 273.7
2	CDCl ₃	40.5		60.7		80.60-96.30 (5)	210.0	272.7
3	CDCl ₃	40.87		60.72/29.14		80.65-98.70 (10)	209.59 209.63	272.27 272.50
[4]Br	CD ₃ CN	40.65(br) 46.54(br)	53.36	61.15	72.06	82.07-103.47 (10)	209.8(br)	267.5(br)
[4]I	CD_2Cl_2	40.68(s) 46.74(s)	53.19	60.76	71.46	81.52-102.67 (10)		
	CDCl	40.49(s) 46.63(s)	52.71	60.30	71.45	81.19-102.38 (10)		
	CD ₃ CN	d	53.59	61.04	73.17	82.20-101.91 (10)		
[4]SO ₃ CF ₃	$CD_{2}Cl_{2}$	40.66(s) 46.19(br)	53.25	60.89	73.01	82.30-103.41 (10)	212.0(br)	
0 0	$CD_{3}CN$	40.73(br) 46.44(br)	53.60	61.06	73.59	82.32-103.36 (9)		
[4]PF ₆	CD ₃ CN	41.52(br) 46.54(br)	53.68	61.13	73.87	82.37-101.10 (9)		
[5]1	CD ₃ CN	39.39(s) 44.15(s)	53.49	62.87	68.67	81.73-98.75 (10)		
[5]SO ₃ CF ₃	$CD_{2}Cl_{2}$	38.73(s) 44.64(s)	52.86	62.33	69.10	81.43-98.58 (9)		
	$(CD_3)_2CO$	39.09(s) 44.13(s)	53.64	62.79	69.93	81.60-96.92 (9)		
[6]Cl	CD ₃ OD		52.19	25.87	71.63	82.93-99.85 (10)	210.72 211.0	268.59 269.10
[6]Br	CD_3CN		52.34	25.95	70.12	82.82-99.66 (10)	210.98 211.25	268.30 269.10
[6]I	CD_3CN		52.44	26.01	70.31	82.79-99.49 (10)	210.90 211.15	268.15 269.47
[6]CF ₃ SO ₃	CD ₃ CN		52.45	25.78	71.0	83.08-99.45 (10)	210.79 211.04	268.68 269.17
[6]PF ₆	CD ₃ OD		52.13	25.82	71.78	82.96-99.81 (10)	210.70 211.02	268.61 268.97
[6]BPĥ₄	CD ₃ CN		52.44	25.76	71.05	83.13-99.43 (10)	210.74 211.02	268.85 269.14
[6]OH	CD ₃ OD		52.16	25.81	71.70	83.01-99.83 (10)	210.70 211.02	269.06 269.79

^a ppm downfield from Me₄Si as an internal standard. All peaks are sharp singlets unless it is stated otherwise. ^b s = sharp, br = broad

^c Number of resonances in parentheses.^d Resonances not observed.

Table 5

Crystal data for the R,S-[Fe₂{ η , η -C₅H₄CH(NMe₂)CH(NMe₃)C₅H₄)(CO)₂(μ -CO)₂]X salts (X⁻ = (a) I⁻· 2CH₃CN and (b) CF₃SO₃⁻· CH₂Cl₂)

		· · · · · · · · · · · · · · · · · · ·
Crystal data	(a)	(b)
Crystal size (mm ³)	$0.30 \times 0.28 \times 0.25$	0.2 imes 0.2 imes 0.3
Formula	$C_{25}H_{31}Fe_2N_4O_4I$	$C_{23}H_{27}F_3Fe_2N_2O_7SCl_2$
M (a.m.u.)	690.1	715.1
Space group	Triclinic	Monoclinic
	PĪ	P21/n
a (Å)	11.136(1)	9.171(2)
b (Å)	10.490(2)	10.240(2)
c (Å)	12.969(2)	30.837(5)
α (o)	79.54(1))	90
β (o)	73.91(1)	96.91(2)
γ (o)	74.81(2)	90
$U(Å^3)$	1395	2874.9
Ζ	2	4
$D_{\rm c} ({\rm g}{\rm cm}^{-3})$		
$\mu \text{ cm}^{-1}$	1.64, 27.11	1.65, 12.51
F000	693.95	1455.93
Radiation	Μο Κα	Μο Κα
Graphite monochromator	$\lambda = 0.71069 \text{ Å}$	$\lambda = 0.71069 \text{ Å}$
Diffractometer	Enraf-Nonius CAD4F	Hilger and Watts Y290
Orienting reflections. range		
Temperature (°C)	$25,13 < \Theta < 20^{\circ}, 22$	$12,13 < \Theta < 20^{\circ}, 22$
Scan method	$\omega - 2\Theta$	$\omega - 2\Theta$
Data collection range	$2 < 2\Theta < 25^{\circ}$	$2 < 2\Theta < 22^{\circ}$
No. of unique data		
Total $I > 3\sigma I$	4504, 2570	1961, 1694
No. of parameters fitted	200	188
R^{a}, R_{w}^{b}	5.60%, 5.40%	6.07%, 6.31%
Largest shift/esd, final cycle	< 0.001	< 0.002
Largest positive peak (e Å ³)	1.4	0.35
Largest negative peak (e Å ³)	2.28	- 0.29

 ${}^{a} R = [\Sigma | |F_{o}| - |F_{c}| |] / [\Sigma | F_{o}|].$ ${}^{b} R_{w} = [[\Sigma (|F_{o}| - |F_{c}|)^{2}] / [\Sigma (|F_{o}|)^{2}]]^{1/2}; w = 1 / [(\sigma F_{o})^{2} - 0.0011^{*} F_{o}^{2}].$

Fig. 1. The structure and atom labelling of the cation in $[Fe_2(\eta,\eta-C_5H_4CH(NMe_2)CH(NMe_3)C_5H_4)(CO)_2]1\cdot 2MeCN.$

data. The structure of (a) was solved by a combination of Patterson search and direct methods, SHELX86 [2], and that of (b) by direct methods, SHELX86 [2]. Both were refined by full matrix least squares using SHELX76 [3]. Data were corrected for Lorentz and polarisation effects but not for absorption. The crystal of (a) decomposed slowly during data collection. The final in-

Fig. 2. The structure and atom labelling of the cation in $[Fe_2-(\eta,\eta-C_5H_4CH(NMe_2)CH(NMe_3)C_5H_4)(CO)_2(\mu-CO)_2]$ [CF₃SO₃] ·CH₂Cl₂.

tensities observed for the intensity control reflexions were 50% of the starting values, and a simple linear correction was applied. Hydrogen atoms were included in calculated positions with fixed thermal parameters. Only the iodine atom, iron atoms and four carbonyl groups of (a), and the iron, chlorine and sulphur atoms of (b), were refined anisotropically. The atomic scattering factors for non-hydrogen atoms and hydrogen atoms and the anomalous dispersion correction factors were taken from the literature [4–6]. Calculations were performed on a VAX 8700 computer for (a) and a DEC 2060 for (b). The ORTEP program was used to obtain the drawings [7].

The structure of the cations and atom labelling schemes are shown in Figs. 1 and 2. Heavy atom coordinates are given in Tables 6 and 7, and selected bond lengths and angles in Tables 8 and 9. Tables of hydrogen atom coordinates and anisotropic thermal parameters for non-hydrogen atoms have been de-

Table 6 Fractional atomic coordinates for R,S-[Fe₂{ η,η -C₅H₄CH(NMe₂) CH(NMe₃)C₅H₄(CO)₂(μ -CO)₂]I·2CH₃CN

Atom	x	У	z
I1	0.22660(8)	0.18967(9)	0.15391(7)
Fe1	0.0109(1)	0.2865(2)	-0.1637(1)
Fe2	0.0607(1)	0.2293(2)	-0.3515(1)
01	0.0141(8)	0.5111(8)	-0.3328(6)
O2	0.1606(8)	0.0193(9)	-0.1979(7)
O3	0.2462(8)	0.3536(10)	-0.1590(8)
O4	0.3242(8)	0.2509(10)	-0.4353(8)
C5	0.0228(10)	0.3976(12)	-0.2995(9)
C6	0.1054(11)	0.1266(12)	-0.2254(9)
C7	0.1540(12)	0.3238(12)	-0.1580(9)
C8	0.2214(12)	0.2438(13)	-0.4036(11)
N1	0.6391(12)	0.3478(12)	0.1933(10)
N2	0.3624(12)	-0.0700(12)	0.4451(10)
N3	-0.4002(8)	0.2229(8)	- 0.0906(7)
N4	- 0.3426(9)	0.3928(9)	-0.3108(7)
C1	0.7143(14)	0.3194(13)	0.2389(11)
C2	0.8138(14)	0.2769(15)	0.2967(12)
C3	0.4203(14)	0.0028(14)	0.3941(11)
C4	0.4961(14)	0.0934(14)	0.3310(11)
C9	-0.2619(9)	0.2148(10)	-0.1667(8)
C10	- 0.2643(10)	0.2620(10)	- 0.2852(8)
C11	-0.4811(11)	0.1698(11)	- 0.1390(9)
C12	-0.3893(11)	0.1365(11)	0.0136(8)
C13	-0.4684(11)	0.3612(11)	-0.0641(9)
C14	-0.4057(13)	0.3992(13)	-0.3981(10)
C15	-0.2983(12)	0.5116(12)	-0.3152(10)
C16	-0.1047(10)	0.1731(11)	- 0.0445(8)
C17	-0.0541(12)	0.2454(12)	0.0037(10)
C18	-0.0976(12)	0.3778(13)	-0.0277(9)
C19	-0.1794(10)	0.3955(11)	- 0.0962(8)
C20	-0.1826(10)	0.2616(10)	-0.1111(8)
C21	-0.1275(10)	0.2223(10)	-0.3616(8)
C22	- 0.0497(10)	0.0920(11)	- 0.3546(9)
C23	0.0567(11)	0.0899(12)	- 0.4460(9)
C24	0.0420(11)	0.2170(11)	- 0.5077(9)
C25	-0.0714(11)	0.3001(11)	-0.4538(9)

Table 7 Fractional atomic coordinates for $R_{,S}$ -[Fe₂(η,η -C₅H₄CH(NMe₂)-CH(NMe₃)C₅H₄(CO)₂(μ -CO)₂][SO₃CF₃]·CH₂Cl₂

Atom	x	У	Z
Fe1	0.1423(2)	0.3231(2)	0.0667(1)
Fe2	0.39358(19)	0.23191(16)	0.06376(5)
S1	0.4225(4)	0.1573(3)	0.2536(1)
C11	0.6312(6)	0.3659(6)	0.4020(2)
C12	0.6802(8)	0.4860(9)	0.3211(2)
F 1	0.4331(10)	- 0.0960(9)	0.2632(3)
F2	0.4520(12)	-0.0301(10)	0.1992(3)
F3	0.2442(14)	-0.0263(12)	0.2225(4)
01	0.2898(10)	0.4105(9)	-0.0070(3)
O2	0.2047(10)	0.0812(10)	0.1140(3)
O3	0.3340(12)	0.0304(11)	-0.0017(4)
O4	-0.0461(12)	0.1740(12)	0.0032(4)
O5	0.3683(10)	0.2386(10)	0.2177(3)
O6	0.3443(13)	0.1641(12)	0.2908(4)
07	-0.0762(14)	0.6592(12)	0.2373(4)
N1	0.3830(12)	0.6697(10)	0.1072(3)
N2	0.5944(11)	0.5150(9)	0.1709(3)
C1	0.2343(14)	0.1676(13)	0.0911(4)
C2	0.2772(14)	0.3500(13)	0.0256(4)
C3	0.0326(16)	0.2310(14)	0.0283(4)
C4	0.3596(15)	0.1158(14)	0.0253(4)
C5	0.0974(14)	0.5232(12)	0.0743(4)
C6	-0.0289(16)	0.4508(13)	0.0738(4)
C7	-0.0138(15)	0.3621(13)	0.1093(4)
C8	0.1269(14)	0.3858(12)	0.1320(4)
C9	0.1991(13)	0.4837(11)	0.1099(4)
C10	0.3392(12)	0.5516(11)	0.1292(4)
C11	0.4647(13)	0.4502(11)	0.1438(4)
C12	0.5155(12)	0.3514(11)	0.1124(3)
C13	0.5748(13)	0.3658(11)	0.0722(4)
C14	0.6202(13)	0.2423(12)	0.0599(4)
C15	0.5923(14)	0.1523(13)	0.0925(4)
C16	0.5288(13)	0.2175(12)	0.1252(4)
C17	0.3024(16)	0.7867(14)	0.1158(5)
C18	0.4101(16)	0.6622(14)	0.0613(4)
C19	0.6947(15)	0.5892(13)	0.1452(4)
C20	0.6876(15)	0.4098(13)	0.1959(4)
C21	0.5485(16)	0.6053(14)	0.2057(4)
C22	0.1139(18)	0.4961(15)	0.2660(5)
C23	0.5535(22)	0.4067(18)	0.3495(5)

posited at the Cambridge Crystallographic Data Centre.

3. Results and discussion

Both R,S- and R,R/S,S-[Fe₂{ η,η -C₅H₄CH(N-Me₂)CH(NMe₂)C₅H₄)(CO)₂(μ -CO)₂], **1** and **2** respectively, react with methylating agents MeX in benzene or acetonitrile with retention of configuration at the ring-linking carbon atoms to give respectively R,S' and R, R'/S,S'-[Fe₂{ η,η -C₅H₄CH(NMe₂)CH(NMe₃) C₅H₄)(CO)₂(μ -CO)₂]X salts, [**4**]X and [**5**]X. Even use of a large excess of MeOSO₂CF₃ does not bring about methylation of the second NMe₂ group. The methylation rates decrease in the order X = CF₃SO₃ > I \gg

(ININE ₂)CH(ININE ₃)	$c_5 n_4 (CO)_2 (\mu$	$-CO_2 \mu - 2CH_3 CF$	۹
Bond lengths (Å)			
Fe1-Fe2	2.492(2)	Fe1-C5	1.919(12)
Fe1-C6	1.912(12)	Fe1-C7	1.761(13)
Fe2-C6	1.901(12)	Fe2-C5	1.906(12)
O2-C6	1.177(12)	Fe2-C8	1.766(12)
O4-C8	1.122(13)	O1-C5	1.179(12)
N3-C11	1.489(13)	O3-C7	1.144(13)
N3-C13	1.502(12)	N3-C9	1.572(12)
N4-C14	1.474(14)	N3-C12	1.500(12)
C9-C10	1.532(13)	N4-C10	1.457(12)
		N4-C15	1.442(13)
Bond angles (°)			
C6Fe1C5	95.0(5)	C7-Fe1-Fe2	102.8(4)
C7-Fe1-C5	87.4(5)	C7-Fe1-C6	90.7(5)
C6-Fe2-C5	95.8(5)	C8-Fe2-Fe1	102.9(5)
C8-Fe2-C5	88.6(5)	C8-Fe2-C6	89.4(5)
C11-N3-C9	110.9(8)	C12-N3-C9	108.6(8)
C12-N3-C11	106.9(8)	C13-N3-C9	113.5(8)
C13-N3-C11	108.9(8)	C13-N3-C12	107.8(8)
C14-N4-C10	113.7(9)	C15-N4-C10	120.7(9)
C15-N4-C14	112.7(9)	Fe2-C5-Fe1	81.3(5)
O1-C5-Fe1	139(1)	O1-C5-Fe2	140(1)
Fe2-C6-Fe1	81.6(5)	O2-C6-Fe1	139(1)
O2-C6-Fe2	140(1)	O3-C7-Fe1	176(1)
O4-C8-Fe2	179(1)	C10-C9-N3	112.5(8)
C20-C9-N3	108.6(8)	C20-C9-C10	122.4(8)
C9-C10-N4	118.0(9)	C21-C10-N4	117.4(8)
C21-C10-C9	111.0(8)		

Table 9

Selected bond lengths and bond angles for R,S-[Fe₂{ η,η -C₅H₄-CH(NMe₂)CH(NMe₃)C₅H₄](CO)₂[SO₃CF₃]·CH₂Cl₂

2.499(2)	Fe1-C1	1.913(14)
1.896(13)	Fe1-C3	1.737(15)
1.920(13)	Fe2–C1	1.891(13)
1.184(14)	Fe2-C4	1.683(14)
1.152(15)	O1-C2	1.196(13)
1.449(16)	O3-C4	1.210(15)
1.522(15)	N1-C10	1.467(15)
1.525(16)	N1-C18	1.468(16)
1,575(16)	N2-C19	1.493(15)
	N2-C21	1.512(16)
95.2(6)	C3-Fe1-Fe2	103.5(5)
90.5(6)	C3-Fe1-C2	89.6(6)
95.2(6)	C4-Fe2-Fe1	101.4(5)
88.9(6)	C4-Fe2-C2	88.3(6)
119(1)	C17-N1-C10	115(1)
114.9(9)	C18-N1-C17	112(1)
106(1)	C20-N2-C11	108.8(9)
108(1)	C21-N2-C11	113.0(9)
82.1(5)	C21-N2-C20	105.2(9)
140(1)	O2-C1-Fe1	137(1)
141(1)	Fe2-C2-Fe1	81.8(5)
176(1)	O1-C2-Fe2	137(1)
117(1)	O3-C4-Fe2	178(1)
111.4(9)	C11-C10-N1	116(1)
111.3(9)	C10-C11-N2	111.4(9)
	C12-C11-C10	121.8(9)
	2.499(2) 1.896(13) 1.920(13) 1.184(14) 1.152(15) 1.449(16) 1.522(15) 1.525(16) 1.575(16) 95.2(6) 90.5(6) 95.2(6) 88.9(6) 119(1) 114.9(9) 106(1) 108(1) 82.1(5) 140(1) 141(1) 176(1) 117(1) 111.4(9) 111.3(9)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 8 Selected bond lengths and bond angles for R,S-[Fe₂{ η,η -C₅H₄CH (NMe₂)CH(NMe₂C₄H₄)(CO)₂(μ -CO)₂]I-2CH₂CN

 SO_4Me . The reaction with $MeOSO_2CF_3$ is virtually instantaneous, but that with Me_2SO_4 does not take place unless $NH_4[PF_6]$ is present. Anion exchange with $[R_4N]X$ or $Na[BPh_4]$ allows the preparation [4]X and [5]X where $X^- = Cl^-$, Br^- , I^- , $[SO_3CF_3]^-$, $[PF_6]^-$, or $[BPh_4]^-$.

Similarly, $[Fe_2\{\eta,\eta-C_5H_4CH_2CH(NMe_3)C_5H_4\}$ (CO)₂(μ -CO)₂]X salts, [6]X, are obtained from $[Fe_2-\{\eta,\eta-C_5H_4CH_2CH(NMe_2)C_5H_4\}(CO)_2(\mu-CO)_2]$, 3.

The salts are red solids. They are soluble in polar organic solvents or water, but [4]X and [5]X where $X^- = [PF_6]^-$ or $[BPh_4]^-$ and all [6]X are virtually insoluble in dichloromethane or chloroform. All are insoluble in non-polar solvents such as benzene. They are stable in air in the solid state but oxidise slowly in solution.

The infrared spectra of [4]X and [5]X are the same in the solid state as in solution. The most intense absorption bands at ca. 1780, 1820, 1970, and 2010 cm⁻¹ (Table 2) are due respectively to the antisymmetric $\nu(CO\mu)$, symmetric $\nu(CO\mu)$, antisymmetric $\nu(CO_1)$ and symmetric $\nu(CO_1)$ vibrations of the *cis*-Fe₂(CO)₂ (μ -CO)₂ moiety (cf. Ref. [8]). The relative intensities of these absorption bands are similar to those for 1 and 2, but there is a small increase in their frequency in going from 1 or 2 to [4]⁺ or [5]⁺, as might be expected from the presence of an NMe₃⁺ moiety close to a cyclopentadienyl ligand.

In solution the spectra of [6]X between 1700 and 2100 cm⁻¹ are similar to those of [4]X and [5]X. However, when $X^- = Cl^-$, Br⁻ and I⁻ the spectra are much more complicated in the solid state. They are similar to those of $[Fe_2(\eta-C_5H_5)_2(CO)_4]$ in *m*-cresol or *o*-chlorophenol solutions, where there are solvent-solute interactions of the type μ -CO...HOR [9]. The

pattern of the $\nu(CO\mu)$ absorption bands is consistent with the presence of $Fe_2(\mu-CO)_2$ and $Fe_2(\mu-CO)(\mu-CO)(\mu-CO) \rightarrow A$) species in the solid (A = acceptor site) [9]. Unfortunately, we have not been able to grow crystals of these salts suitable for an X-ray study, which would determine unambiguously whether such interactions are present.

The spectra of $[4]^+/[5]^+$ and $[4(CD_3)]^+/[5(CD_3)]^+$ differ only in the presence of $\nu(CD)$ absorption bands 2250 and 2287 cm⁻¹ in the latter. The $\nu(CH)$ bands of the CH₃ groups are found at 2794 and 2919 cm⁻¹. The assignment of the ¹H- and ¹³C-NMR spectra of

The assignment of the ¹H- and ¹³C-NMR spectra of the [4]X, [5]X and [6]X salts (Tables 3 and 4) are straight-forward, and based on those for 1, 2 and 3 [1].

Variable temperature ¹H-NMR spectroscopy shows that in solution the three cations exist as a single species. The ${}^{1}H-{}^{1}H$ coupling constants across this bond [10] suggest that $[5]^+$ and $[6]^+$ have structures derived from 2 and 3 (Fig. 3) whilst $[4]^+$ has the same structure as in the solid state (see below). None of them undergoes a partial rotation about its ring-linking C-C bond that would convert them into their other possible isomer (Fig. 3) (cf. 1 which does, and 2 and 3 which do not [1]). Both $[4]^+$ and $[5]^+$ cations undergo (i) rotation of the Me₃N group about the CH-NMe₃ bond and (ii) rotation-inversion of the NMe₂ group, both of which slow on cooling. The $\Delta G_{T_c}^{\neq}$ for these processes may be calculated from the coalescence temperatures T_c [11]. For all salts investigated the values for (i) lie between 39 and 42 kJ mol⁻¹ and those for (ii) between 61 and 64 kJ mol⁻¹. They are independent of anion and the conformation of the cation. The $\Delta G_{T_{c}}^{*}$ values for (ii) are much greater than those found for the corresponding NMe₂ rotation-inversions in 1 or 2 (ca. 37 kJ mol⁻¹) [1]. It is possible that this is the result

Fig. 3. Newman projections along the ring-linking C-C bonds of $[4]^+$, $[5]^+$ and $[6]^+$ cations and the alternative, non-observed rotamers $[5^*]^+$ and $[6^*]^+$, together with proton labelling.

of an interaction of the lone pair of the NMe₂ group with the CHNMe₃⁺ group in the cations. Circumstantial evidence for this is found in the case of [6][PF₆], for which rotation of the Me₃N group about the CH–NMe₃ bond cannot be slowed even at 223 K in $(CD_3)_2CO$ solution (also see below).

The most interesting feature of the ¹H-NMR spectra of $[4]^+$, $[5]^+$ and $[6]^+$ salts is that the chemical shifts, but not the coupling constants, of some of their resonances vary markedly with solvent and counteranion, whereas others do not. The only chemical shifts and coupling constants listed in Table 3 are for the H atoms bound to the ring-linking carbon atoms. The full ¹H-NMR spectra may be obtained from the authors on request. Although the appearance of the spectra in the cyclopentadienyl region change, the largest chemical shift variations are those of the Me₃NC-H protons which have been assigned unambiguously by ${}^{13}C/{}^{1}H$ correlated double resonance (COSY). In [4]X its chemical shift decreases along the anion series $X^- = Cl^- >$ $Br^{-}>I^{-}>[SO_3CF_3]^{-}>[PF_6]^{-}$, e.g. from 5.99 ppm for [4]Cl to 4.43 ppm for [4][SO₃CF₃] (CD₂Cl₂ solution), and the solvent series $CD_2Cl_2 \sim CDCl_3 > CD_3CN$ for a given X⁻, e.g. from 5.52 ppm in CD_2Cl_2 to 4.26 ppm in CD₃CN for [4]I. In contrast the chemical shift for the Me₂NC-H proton only changes from 4.46 to 4.52ppm, and the Me₃NCH-Me₂NCH coupling (J = ca.6.3 Hz) is constant. The anion effects are less marked in CD₃CN than in CD₂Cl₂ or CDCl₃. Comparable results were obtained with the [5]X and [6]X salts, but NMR spectra of the latter in CDCl₃ or CD₂Cl₂ solutions could not be obtained because of low solubility, and so CD₃CN and CD₃OD were used instead. For [6]X in CD₃CN solution the chemical shift of Me₃NC- H_A decreases along the series $X^- = Cl^- > Br^- > l^- \gg$ $[BPh_4]^- \sim [CF_3SO_3]^- \sim [PF_6]^-$, but those of H_B and H_{C} hardly change (labelling of these protons is given in Fig. 3). In CD_3OD solution the anion effect is less marked. However, on changing from CD₃CN to CD₃OD all chemical shifts are more or less affected, but those of H_A are affected most.

The incremental addition of Y^- ions as $[n-Bu_4N]Y$ to solutions of [4]X or [5]X results in spectra which, at first, are intermediate between those of [4]X or [5]X and [4]Y or [5]Y, may become comparable with those of [4]Y or [5]Y, and may finally go beyond those of [4]Y or [5]Y (Table 3). The addition of more [4]X or [5]X partially reverse these changes. In related experiments, the addition of $[Me_4N][PF_6]$ or [6][CF₃SO₃] to a solution of [6]I in CD₃CN causes the Me₃NC-H_A resonance to move upfield with accompanying small changes in the cyclopentadienyl resonances. The chemical shift for H_A (and H_B and H_C) in a 1:1 molar mixture of $[Me_4N][PF_6]$ and [6]I are very close to the mean of the shifts for pure [6][PF₆] and [6]I whilst at 3:1 ratio the spectrum is virtually identical with that of

[6][PF₆]. However, even the addition of large amounts of [6][CF₃SO₃] ($\delta H_A = 3.90$ ppm) to its I⁻ counterpart did not induce the chemical shift of H_A to move upfield of 4.15 ppm.

These observations may be rationalized if it assumed that solutions of [4]X, [5]X and [6]X contain (i) cation-anion pairs, (ii) solvated cations, (iii) solvated anions and (iv) free cations in facile equilibria which cannot be slowed on the NMR timescale above 183 K. The observed ¹H chemical shifts are then the average of those for the various species in the solutions. It is possible that there are two types of ion pairs (i) and solvated cations (ii). In the first there is a purely electrostatic interaction between the positively charged part of the cation and the anion or negatively charged part of the solvent molecule. There is no independent evidence for this in the systems described here but observations by others suggest that it occurs [12] and it would be unwise for us to neglect it. In the second there is a specific, strong, Lewis base-Lewis acid interaction between the anion or solvent molecule and the Me_3NC-H hydrogen atom of the cation. This hydrogen bonding is responsible for the variation of the chemical shift of the latter and, as a secondary effect, of the cyclopentadienyl protons. The anion \rightarrow H interactions would be expected to decrease in importance and the equilibria shift away from (i) so that the chemical shift of the Me_3NC-H hydrogen atom would move upfield along the series for $X^- = Cl^- > Br^- > l^ \gg$ [SO₃CF₃]⁻>[PF₆]⁻>[BPh₄]⁻, and for solvent = CD_2Cl_2 or $CDCl_3 > CD_3CN > CD_3OD$. Both acetonitrile and methanol would be expected to compete with the anion for this hydrogen bonding, but the greater effect of methanol may be a result of its added ability to solvate the anion, at which acetonitrile is notoriously poor. (iv) is more subtle and applies to [4]X and [5]X only. The very high barriers to Me₂N rotation-inversion (vs. [1] and [2], see above) and NMe₃ rotation (vs. [6]X, see above) may indicate that the lone pair on the Me_2N group in [4]⁺ and [5]⁺ interacts with the Me₃N⁺CH part of the cation (see above) and competes with (i) and (ii). However, although this could be $Me_2N \rightarrow H-CNMe_3$ in [5]⁺, these are not possible in $[4]^+$ where Me₂N and H are transoid to one another (see below).

The specific nature of the suggested interaction between the cations and solvent or anion implies that the relevant hydrogen atom is very acidic. This would be expected because the adjacent NMe_3 moiety is able to stabilize the resulting partial negative charge on the saturated carbon atom.

The addition of $[R_4N]Y$ (R = Me or *n*-Bu) to solutions of [4]X, [5]X or [6]X are also explicable on the basis of our proposals. The $[R_4N]^+$ ions are less effective at hydrogen bonding than are [4]⁺, [5]⁺ or [6]⁺, so when $Y = Br^-$ or I^- the proportion of the

organometallic cations which are hydrogen bonded to these anions may be greater than in the absence of added $[R_4N]Y$. However, when $Y^- = [PF_6]^-$ and $X^- =$ I^- in CD₃CN solution, the $[R_4N]^+$ will compete with the organometallic cations for the donor X^- ions and the spectra will tend towards those of the $[PF_6]^-$ salts of $[4]^+$, $[5]^+$ or $[6]^+$.

Similar observations have been reported for $[Me(Ph)(\alpha-naphthyl)(PhCH_2)P]X$ salts [13]. Their ¹H-NMR spectra are a function of both the solvent and X^{-} . In particular, the two benzylic protons give rise to a singlet in the polar solvent dimethylsulphoxide or in the less polar solvent CDCl₃ with large anions, e.g. $[I_3]^-$. However they become distinguishable and couple in chloroform solution when X⁻ is a coordinating anion and their chemical shift separation decreases $X^{-} = Cl^{-}$, $Br^{-} > [NO_3]^{-}$. Mixtures of the salts give a single set of resonances with intermediate chemical shift differences. The H-H coupling constant is independent of the anion. These effects were attributed to ion-pairing in solution. Although this is correct, in light of our results it seems likely that there is a more specific interaction between the anion and one of the benzylic hydrogen atoms which does not take place with the larger anions because of the more diffuse nature of its negative charge and, perhaps, steric effects.

In subsequent papers in the same series it was reported that the $[BPh_4]^-$ anion caused very low chemical shifts for the methylene protons in various $[R_3M-CH_2R']^+$ and related cations (M = N, P, As, or Sb; R' = aryl, CO₂Et, or CN) as compared with, for example, Cl⁻ or Br⁻. This was attributed to aromatic ring current effects in the ion pair [14]. This does not appear to be the case for the [6]X salts as the effects of the $[BPh_4]^-$ anion does not differ greatly from those of the $[SO_3CF_3]^-$ and $[PF_6]^-$, whereas all three are very different from Cl⁻, Br⁻ and I⁻.

There have been many other examples of the involvement of C-H bonds in hydrogen bonding [15]. For example, Mautner has suggested that they are important in complexes of polyethers [16], and a recent study [17] of the $[n-Bu_4N][BH_4]$ system using nuclear Overhauser effects suggest that in CDCl₃ solution there is a strong anion-cation interaction of each of three BH₄ hydrogens with two α -CH₂ and one β -CH₂ protons in a pyramidal created by N and three n-Bu groups of the cation. Even in unfavourable cases these interactions appear to be present, e.g. calculations have shown that the binding energies for the model systems H₃C- $H \cdots Y - I - Y^-$ are 1.1, 1.3 and 1.6 kcal mol⁻¹ for Y = I, Br and Cl respectively [18], whilst in more favourable circumstances they are significant, e.g. the $-C-H \cdots O$ interactions between $[Me_4N]^+$ and water or acetone have strengths > 9 kcal mol⁻¹ [16].

The effects of anion or solvent on the various ${}^{13}C$

chemical shifts of the [4]⁺ cation are small (Table 4). The largest variation is that of the CHNMe₃ atom. Its chemical shift decreases along the series $X^- = Br^- >$ $I^- > [SO_3CF_3]^- > [PF_6]^-$ in CD₃CN and $X^- = I^- >$ $[SO_3CF_3]^-$ in CD₂Cl₂, and for CD₂Cl₂ > CD₃CN when $X^- = I^-$ or $[SO_3CF_3]^-$. The same is true for [6]X salts in CD₃CN and CD₃OD solutions (Table 4). This is the behaviour expected for specific interactions between the Me₃NC-H hydrogen atom and the anion or solvent [15].

There are two other noteworthy features of the room temperature ¹³C-NMR spectra of the [4]X and [5]X. The NMe₂ groups normally give rise to two singlets which are sharp in some spectra and broad in others but in one case are not observed. This is consistent with Me/Me site exchange (cf. ¹H-NMR spectra). The second feature is our inability to detect resonances due to t and μ -CO groups under conditions where they are readily observed in the precursors 4 and 5. The exception is [4]Br in CD₃CN which shows two very broad resonances at 209.8 and 267.5 δ . This implies fast CO exchange.

In contrast, the ¹³C resonances of the four distinguishable CO groups of [6]X salts have been detected. They are sharp and there is no evidence for CO/CO site exchange at room temperature. We have no explanation for these differences and have not investigated the system further.

3.1. The reaction of $[4][SO_3CF_3]$ and $[5][SO_3CF_3]$ with $[Et_4N]F \cdot 2H_2O$

The F⁻ salts of [4]⁺ and [5]⁺ could not be prepared. Addition of excess $[n-Bu_4]F$ in tetrahydrofuran to a solution of [4][SO₃CF₃] gave a ca. 80% yield of [4] [H₄F₅], whilst [5][SO₃CF₃] and [Et₄N]F \cdot 2H₂O in dichloromethane gave a 10% yield of [5][H₅F₆] and extensive decomposition. The [H₄F₅]⁻ and [H₅F₆]⁻ anions are formulated from elemental analyses only. They are very stable and survive chromatography (alumina/methanol). The ¹H-NMR spectra of these salts show that the anions are more akin to [PF₆]⁻ than Cl⁻.

In acetonitrile solution, as a consequence of the very strong H-F bond [19] coupled with the limited anion solvation, $[Et_4N]F \cdot 2H_2O$ acts as source of OH⁻ which arises from the reaction between F⁻ ions and H₂O molecules which also gives HF. The presence of OH⁻ ions is confirmed by the isolation of [6]OH from the reaction of [6][SO₃CF₃] with $[Et_4N]F \cdot 2H_2O$. No further reaction occurs in this case, but if [6][SO₃CF₃] is replaced by [4][SO₃CF₃], the enamine $[Fe_2[\eta,\eta-C_5H_4$ CHC(NMe₂)C₅H₄)(CO)₂(μ -CO)₂] is formed by elimination of H⁺ and Me₃N, and if replaced by [5][SO₃CF₃] the amine $[Fe_2[\eta,\eta-C_5H_4CH_2CH(NMe_2)C_5H_4](CO)_2$ (μ -CO)₂], 3, is formed in a water-gas shift mediated Me₃N displacement by H⁻. The reactions of OH⁻ with $[4][SO_3CF_3]$ and $[5][SO_3CF_3]$ to give the same products have been discussed in detail in Ref. [1].

3.2. Structures of the R,S-[Fe₂{ $\eta,\eta'-C_5H_4CH(NMe_2)$ CH(NMe₃)C₅H₄}(CO)₂(μ -CO)₂]X salts (X⁻=I⁻ and [SO₃CF₃]⁻)

Because of their very different ¹H-NMR spectra, it was not clear that these two salts possessed the same cation, and so the structures of both were determined. Crystals of [4]I · 2MeCN were grown from acetonitrile whilst those of [4][SO₃CF₃] · CH₂Cl₂ were grown from dichloromethane-hexane mixtures. X-ray diffraction shows that the unit cells contain anions and cation together with the appropriate solvent of crystallization. The structures of the [Fe₂{ η,η -C₅H₄CH(NMe₂)CH(N-Me₃)C₅H₄)(CO)₂(μ -CO)₂]⁺ cations are illustrated in Figs. 1 and 2, and their bond lengths and bond angles summarised in Tables 8 and 9.

The [4]⁺ cations in both salts are very similar with bond lengths and bond angles close to those found for 1 [20], 2 [1] and related molecules [21]. There has been no change in configuration of the two ring-linking carbon atoms on methylation; one has the R configuration and the other S as in 1 itself. In the cations illustrated (Figs. 1 and 2) the $CHNMe_2$ carbon is R and the CHNMe₃ carbon is S. The NMe₃ group is transoid to a cyclopentadienyl group and the NMe₂ transoid to H rather than vice versa as in the alternative R,S isomer which has not been detected (cf. Fig. 3). The H-C-C-H dihedral angle in [4]I is 57°, in [4][SO₃CF₃] it is 63.4°, and in 4 it is 79°. In both cations the NMe₂ is oriented so that its Me groups point away from and, presumably, its lone pair points towards the NMe_3^+ group. This is consistent with the presence of $NMe_2 \rightarrow CHNMe_3^+$ interactions postulated above to account for the ¹H-NMR spectra of the cations.

A detailed comparison of the C-N distances show that those of the CNMe₃ moiety are longer than those of the CNMe₂ moieties in both [4]⁺ cations and 1 (1.460(12)-1.497(10) Å [20]). Although the C-N(3)Me₃ distance appears to be longer than the N(3)-Me distances in [4]I, the same is not true for [4]SO₃CF₃. The reasons for this minor difference between the two cations is not clear.

References

- B. Callan, M.G. Cox, A. McCabe, A.R. Manning, P. Sayal, S.C. Wade and F.S. Stephens, J. Organomet. Chem., 466 (1994) 185.
- [2] G.M. Sheldrick, SHELX86: A Computer Program for Crystal Structure Determination, University of Göltingen, 1986.
- [3] G.M. Sheldrick, SHELX76: A Computer Program for Crystal Structure Determination, University of Cambridge, 1976.
- [4] D.T. Cromer and J.B. Mann, Acta Crystallogr., A24 (1968) 321.
- [5] R.F. Stewart, E.R. Davidson and W.T. Simpson, J. Chem. Phys., 42 (1965) 3175.
- [6] D.T. Cromer and D.J. Liberman, J. Chem. Phys., 53 (1970) 1891.
- [7] C.K. Johnson, ORTEP, Oak Ridge National Laboratory (Rep) ORNL (US), 1965-3794, revised 1971.
- [8] A.R. Manning, J. Chem. Soc. A, (1968) 1319.
- [9] P. McArdle and A.R. Manning, J. Chem. Soc. A, (1970) 2133.
- [10] R.M. Silverstein, G.C. Bassler and T.C. Morrill, Spectrometric Identification of Organic Compounds, Wiley, New York, 3rd edn., 1974.
- [11] H. Shanan-Atidi and K.H. Bar-Eli, J. Phys. Chem., 74 (1970) 961.
- [12] R.A. Robinson and R.H. Stokes, *Electrolyte Solutions*, Butterworths, London, 2nd edn., 1970.
- [13] G.P. Schiemenz and H. Rast, Tetrahedron Lett., (1969) 2165.
- [14] G.P. Schiemenz and H.P. Hansen, Angew. Chem. Int. Ed. Engl. 12 (1973) 400; G.P. Schiemenz, Tetrahedron, 29 (1973) 741.
- [15] R.D. Green, Hydrogen Bonding by C-H Groups, Macmillan, London, 1974.
- [16] M. Meot-Ner (Mautner), Acc. Chem. Res., 17 (1984) 186.
- [17] T.C. Pochapsky and P.M. Stone, J. Am. Chem. Soc., 112 (1990) 6714.
- [18] J. Novoa, F. Mota, M.H. Whangbo and J.M. Williams, *Inorg. Chem.*, 30 (1991) 54.
- [19] J.H. Clark, Chem. Rev., 80 (1980) 429.
- [20] F.S. Stephens, J. Chem. Soc. A, (1970), 1722.
- [21] R.F. Bryan, P.T. Greene, M.J. Newlands, and D.S. Field, J. Chem. Soc. A, (1970) 3068.